Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 194
Filter
1.
Chinese Journal of Biologicals ; (12): 400-2023.
Article in Chinese | WPRIM | ID: wpr-976169

ABSTRACT

@#ObjectiveTo design and construct CRISPR/Cas9 gene editing system targeting Tsc1 and Tsc2 genes,and verify the effectiveness of gene editing at cellular level.MethodsThree sgRNA guide sequences were designed for mouse Tsc1 and Tsc2 genes respectively. The sgRNA expression vector was constructed and co-transfected with the Cas9 expression plasmid into mouse N2a cells. After the positive cells were obtained through drug screening,the DNA fragments at the targeting site were amplified by PCR,and the targeting efficiency was verified by TA clone sequencing.ResultsThe five targets of Tsc1-M-sgRNA2 and Tsc1-M-sgRNA3 of Tsc1 gene and Tsc2-M-sgRNA1,Tsc2-M-sgRNA2 and Tsc2-M-sgRNA3 of Tsc2 gene were all edited,and the editing efficiency was 40%,80%,30%,30% and 20%,respectively.ConclusionA CRISPR-Cas9 gene editing system with editing efficiency targeting mouse Tsc1 and Tsc2 genes was successfully constructed.

2.
Chinese Journal of Cancer Biotherapy ; (6): 373-379, 2023.
Article in Chinese | WPRIM | ID: wpr-974922

ABSTRACT

@#[摘 要] 目的:基于CRISPR/Cas9基因编辑技术制备无内源TCR的TCR-T细胞并鉴定其在体外杀伤HPV16阳性宫颈癌SiHa细胞的功能。方法:培养健康志愿者外周血CD8+ T细胞和Jurkat细胞,CRISPR/Cas9基因编辑技术敲除CD8+ T、Jurkat细胞的TCR基因,制备过表达转基因TCR的重组慢病毒,在敲除内源性TCR的CD8+ T和Jurkat细胞中用慢病毒过表达转基因TCR制备TCR-T细胞,多色FCM检测TCR-T细胞中TCR和CD3的表达水平,荧光素酶活性实验检测TCR-T细胞对HPV16阳性SiHa细胞的杀伤效率。结果:CRIPSR/Cas9基因编辑技术高效地敲除了外周血CD8+ T细胞和Jurkat细胞中的TRAC和TRBC基因,敲除效率分别为(81.4±4.5)%、(98.5±0.07)%,制备的无内源TCR的TCR-T细胞高效表达转基因TCR,在外周血CD8+ T和Jurkat细胞中表达率为(66.0±17.8)%、(97.3±2.6)%,敲除内源TRAC和TRBC基因有效增强CD8+ T和Jurkat细胞膜表达转基因TCR(均P<0.01),敲除内源TCR增强TCR-T细胞特异性杀伤HPV16阳性的SiHa细胞[(71.4±1.0)% vs (35.1±2.0)%,P<0.01)]。结论:无内源TCR的TCR-T细胞显著增强转基因TCR的表达和对HPV16阳性宫颈癌SiHa细胞的靶向杀伤能力,为提高TCR-T细胞的临床疗效提供了实验依据。

3.
Chinese Journal of Experimental Ophthalmology ; (12): 925-930, 2023.
Article in Chinese | WPRIM | ID: wpr-990931

ABSTRACT

Several mutant genes for inherited retinal diseases have been identified, but effective treatments are still lacking.The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system can edit human genomic DNA by nonhomologous end joining or homology-directed repair, offering more possibilities for the treatment of hereditary retinal diseases.CRISPR/Cas9 not only can genetically correct patient-derived induced pluripotent stem cells (iPSCs) to observe their differentiation into retinal cells thereby, thereby exploring the pathogenesis of the disease and implementing cell therapy, but can also be delivered to the body via vectors and directly act on target cells to achieve in vivo gene editing.CRISPR/Cas9 gene editing technology in hereditary retinal diseases has been mainly used in retinitis pigmentosa, hereditary X-linked juvenile retinoschisis, and Leber congenital amaurosis 10, of which the in vitro application of CRISPR/Cas9 for Leber congenital amaurosis 10 has entered the clinical trial stage.In this paper, we reviewed the mechanism and key advances of CRISPR/Cas9 and provided an overview of gene editing in IRDs.

4.
International Journal of Biomedical Engineering ; (6): 144-150, 2023.
Article in Chinese | WPRIM | ID: wpr-989330

ABSTRACT

Cervical cancer is the fourth-ranked malignant tumor of female cancer in the world, and it seriously threatens women’s health. The main treatment options for patients with cervical cancer are surgery or concurrent chemoradiotherapy. With the development of medical research, researchers are committed to exploring more effective and specific treatment options in order to increase the treatment options for cervical cancer and improve the treatment effect. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technology is a method in which the Cas9 protein uses guide RNA (gRNA) to target the target gene and achieve precise editing of the target gene. At present, CRISPR/Cas9 technology has become a promising and powerful gene editing tool, a new and effective targeted therapy that has been applied in the treatment of various tumors. The research progress of CRISPR/Cas9 technology in the treatment of cervical cancer is mainly reviewed in terms of action targets, combination therapy strategies, and related drug resistance gene screening in order to provide new strategies for the treatment of cervical cancer.

5.
Journal of Southern Medical University ; (12): 527-536, 2023.
Article in Chinese | WPRIM | ID: wpr-986958

ABSTRACT

OBJECTIVE@#To investigate the role of myosin heavy chain 9 (MYH9) in regulation of cell proliferation, apoptosis, and cisplatin sensitivity of non-small cell lung cancer (NSCLC).@*METHODS@#Six NSCLC cell lines (A549, H1299, H1975, SPCA1, H322, and H460) and a normal bronchial epithelial cell line (16HBE) were examined for MYH9 expression using Western blotting. Immunohistochemical staining was used to detect MYH9 expression in a tissue microarray containing 49 NSCLC and 43 adjacent tissue specimens. MYH9 knockout cell models were established in H1299 and H1975 cells using CRISPR/Cas9 technology, and the changes in cell proliferation cell were assessed using cell counting kit-8 (CCK8) and clone formation assays; Western blotting and flow cytometry were used to detect apoptosis of the cell models, and cisplatin sensitivity of the cells was evaluated using IC50 assay. The growth of tumor xenografts derived from NSCLC with or without MYH9 knockout was observed in nude mice.@*RESULTS@#MYH9 expression was significantly upregulated in NSCLC (P < 0.001), and the patients with high MYH9 expression had a significantly shorter survival time (P=0.023). In cultured NSCLC cells, MYH9 knockout obviously inhibited cell proliferation (P < 0.001), promoted cell apoptosis (P < 0.05), and increased their chemosensitivity of cisplatin. In the tumor-bearing mouse models, the NSCLC cells with MYH9 knockout showed a significantly lower growth rate (P < 0.05). Western blotting showed that MYH9 knockout inactivated the AKT/c- Myc axis (P < 0.05) to inhibit the expression of BCL2- like protein 1 (P < 0.05), promoted the expression of BH3- interacting domain death agonist and the apoptosis regulator BAX (P < 0.05), and activated apoptosis-related proteins caspase-3 and caspase-9 (P < 0.05).@*CONCLUSION@#High expression of MYH9 contributes to NSCLC progression by inhibiting cell apoptosis via activating the AKT/c-Myc axis.


Subject(s)
Animals , Humans , Mice , Apoptosis , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation , Cisplatin/pharmacology , Cytoskeletal Proteins/metabolism , Lung Neoplasms/metabolism , Mice, Nude , Myosin Heavy Chains/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
6.
Chinese Journal of Biotechnology ; (12): 399-424, 2023.
Article in Chinese | WPRIM | ID: wpr-970382

ABSTRACT

The CRISPR-Cas9 system is composed of a clustered regularly interspaced short palindromic repeat (CRISPR) and its associated proteins, which are widely present in bacteria and archaea, serving as a specific immune protection against viral and phage secondary infections. CRISPR-Cas9 technology is the third generation of targeted genome editing technologies following zinc finger nucleases (ZFNs) and transcription activator like effector nucleases (TALENs). The CRISPR-Cas9 technology is now widely used in various fields. Firstly, this article introduces the generation, working mechanism and advantages of CRISPR-Cas9 technology; secondly, it reviews the applications of CRISPR-Cas9 technology in gene knockout, gene knock-in, gene regulation and genome in breeding and domestication of important food crops such as rice, wheat, maize, soybean and potato. Finally, the article summarizes the current problems and challenges encountered by CRISPR-Cas9 technology and prospects future development and application of CRISPR-Cas9 technology.


Subject(s)
Gene Editing , CRISPR-Cas Systems/genetics , Plant Breeding , Crops, Agricultural/genetics , Technology
7.
Chinese Journal of Biotechnology ; (12): 304-317, 2023.
Article in Chinese | WPRIM | ID: wpr-970376

ABSTRACT

Candida albicans is one of the major causes of invasive fungal infections and a serious opportunistic pathogen in immunocompromised individuals. The antimicrobial peptide AMP-17 has prominent anti-Candida activity, and proteomic analysis revealed significant differences in the expression of cell wall (XOG1) and oxidative stress (SRR1) genes upon the action of AMP-17 on C. albicans, suggesting that AMP-17 may exert anti-C. albicans effects by affecting the expression of XOG1 and SRR1 genes. To further investigate whether XOG1 and SRR1 genes were the targets of AMP-17, C. albicans xog1Δ/Δ and srr1Δ/Δ mutants were constructed using the clustered regulatory interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system. Phenotypic observations revealed that deletion of two genes had no significant effect on C. albicans growth and biofilm formation, whereas XOG1 gene deletion affected in vitro stress response and mycelium formation of C. albicans. Drug sensitivity assay showed that the MIC80 values of AMP-17 against xog1Δ/Δ and srr1Δ/Δ mutants increased from 8 μg/mL (for the wild type C. albicans SC5314) to 16 μg/mL, while the MIC80 values against srr1Δ/Δ: : srr1 revertants decreased to the level of the wild type SC5314. In addition, the ability of AMP-17 to inhibit biofilm formation of both deletion strains was significantly reduced compared to that of wild type SC5314, indicating that the susceptibility of the deletion mutants to AMP-17 was reduced in both the yeast state and during biofilm formation. These results suggest that XOG1 and SRR1 genes are likely two of the potential targets for AMP-17 to exert anti-C. albicans effects, which may facilitate further exploration of the antibacterial mechanism of novel peptide antifungal drugs.


Subject(s)
Humans , Candida albicans , Antimicrobial Peptides , Proteomics , Peptides/pharmacology , Transcription Factors/metabolism , Antifungal Agents/pharmacology
8.
Chinese Journal of Biotechnology ; (12): 192-203, 2023.
Article in Chinese | WPRIM | ID: wpr-970368

ABSTRACT

As main recipient cells for porcine reproductive and respiratory syndrome virus (PRRSV), porcine alveolar macrophage (PAM) are involved in the progress of several highly pathogenic virus infections. However, due to the fact that the PAM cells can only be obtained from primary tissues, research on PAM-based virus-host interactions remains challenging. The improvement of induced pluripotent stem cells (iPSCs) technology provides a new strategy to develop IPSCs-derived PAM cells. Since the CD163 is a macrophage-specific marker and a validated receptor essential for PRRSV infection, generation of stable porcine induced pluripotent stem cells lines containing CD163 reporter system play important roles in the investigation of IPSCs-PAM transition and PAM-based virus-host interaction. Based on the CRISPR/Cas9- mediated gene editing system, we designed a sgRNA targeting CD163 locus and constructed the corresponding donor vectors. To test whether this reporter system has the expected function, the reporter system was introduced into primary PAM cells to detect the expression of RFP. To validate the low effect on stem cell pluripotency, we generated porcine iPSC lines containing CD163 reporter and assessed the pluripotency through multiple assays such as alkaline phosphatase staining, immunofluorescent staining, and EdU staining. The red-fluorescent protein (RFP) expression was detected in CD163-edited PAM cells, suggesting that our reporter system indeed has the ability to reflect the expression of gene CD163. Compared with wild-type (WT) iPSCs, the CD163 reporter-iPSCs display similar pluripotency-associated transcription factors expression. Besides, cells with the reporter system showed consistent cell morphology and proliferation ability as compared to WT iPSCs, indicating that the edited-cells have no effect on stem cell pluripotency. In conclusion, we generated porcine iPSCs that contain a CD163 reporter system. Our results demonstrated that this reporter system was functional and safe. This study provides a platform to investigate the iPS-PAM development and virus-host interaction in PAM cells.


Subject(s)
Animals , Swine , Induced Pluripotent Stem Cells/metabolism , Receptors, Cell Surface/genetics , Antigens, CD/metabolism , Porcine respiratory and reproductive syndrome virus/genetics
9.
Chinese Journal of Biologicals ; (12): 145-150+157, 2023.
Article in Chinese | WPRIM | ID: wpr-965608

ABSTRACT

@#Objective To knockout interferon alpha/beta receptor subunit 1(IFNAR1) gene in human colorectal adenocarcinoma cells Caco-2 using clustered regularly interspaced short palinmic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)system to construct IFNAR1 knockout Caco-2 cell line.Methods The single guide RNA(sgRNA)sequence was designed to specifically recognize the exon region of IFNAR1 gene using CRISPR/Cas9 technology,and the LentiCRISPRv2-IFNAR1-sgRNA recombinant plasmid was constructed.Caco-2 cells were infected with the plasmid packaged by lentivirus and screened by puromycin resistance.The obtained monoclonal cell lines were cultured by limited dilution method,which were verified for the effect of IFNAR1 gene knockout by target gene sequencing and Western blot,and detected for the mRNA levels of CXC chemokine ligand 10(CXCL10)and interferon-stimulatd gene 20(ISG20)in IFNAR1knockout cells by adding exogenous IFNβ.Results Sequencing results of plasmid LentiCRISPRv2-IFNAR1-sgRNA showed that the insertion sites were all located at the sticky end of BsmBⅠenzyme digestion.Two IFNAR1 knockout monoclonal cell lines were obtained.The sequencing results showed that Caco-2-IFNAR1-KO1 had 5 bp deletion in the sixth exon of IFNAR1,and Caco-2-IFNAR1-KO2 had 18 bp deletion and 1 bp insertion in the seventh exon.Compared with wild-type Caco-2 cells,Caco-2-IFNAR1-KO1 and Caco-2-IFNAR1-KO2 cells showed no expression of IFNAR1 protein.Compared with no IFNβ stimulation,the mRNA levels of CXCL10 gene(t = 0.566 and 1.268 respectively,P>0.05)and ISG20 gene(t =1.522 and 1.733 respectively,P>0.05)in Caco-2-IFNAR1-KO1 and Caco-2-IFNAR1-KO2 cells stimulated by 50 ng/mL IFNβ showed no significant increase.While compared with those of wild-type Caco-2 cells,the mRNA levels of CXCL10gene(t = 6.763 and 6.777 respectively,P<0.05)and ISG20 gene(t = 5.664 and 5.65 respectively,P<0.05)in Caco-2-IFNAR1-KO1 and Caco-2-IFNAR1-KO2 cells decreased significantly under the stimulation of 50 ng/mL exogenous IFNβ.Conclusion Caco-2 cell line with IFNAR1 knockout was successfully constructed by using CRISPR/Cas9 technology,and the downstream molecules activated by IFNAR(interferon alpha/beta receptor)in this cell line were obviously inhibited,which provided a powerful tool for further exploration of the innate immune response and replication packaging mechanism of Caco-2 cells after virus infection.

10.
Chinese Journal of Biotechnology ; (12): 2566-2578, 2023.
Article in Chinese | WPRIM | ID: wpr-981216

ABSTRACT

Gene editing technology is a genetic operation technology that can modify the DNA sequence at the genomic level. The precision gene editing technology based on CRISPR/Cas9 system is a gene editing technology that is easy to operate and widely used. Unlike the traditional CRISPR/Cas9 system, the precision gene editing technology can perform site-directed mutation of genes without DNA template. This review summarizes the recent development of precision gene editing technology based on CRISPR/Cas9, and prospects the challenges and opportunities of this technology.


Subject(s)
Gene Editing , CRISPR-Cas Systems/genetics , Mutation , Genome
11.
Chinese Journal of Biotechnology ; (12): 1644-1654, 2023.
Article in Chinese | WPRIM | ID: wpr-981160

ABSTRACT

To explore the effect of Mlk3 (mixed lineage kinase 3) deficiency on blood pressure, Mlk3 gene knockout (Mlk3KO) mice were generated. Activities of sgRNAs targeted Mlk3 gene were evaluated by T7 endonuclease I (T7E1) assay. CRISPR/Cas9 mRNA and sgRNA were obtained by in vitro transcription, microinjected into zygote, followed by transferring into a foster mother. Genotyping and DNA sequencing confirmed the deletion of Mlk3 gene. Real- time PCR (RT-PCR), Western blotting or immunofluorescence analysis showed that Mlk3KO mice had an undetectable expression of Mlk3 mRNA or Mlk3 protein. Mlk3KO mice exhibited an elevated systolic blood pressure compared with wild-type mice as measured by tail-cuff system. Immunohistochemistry and Western blotting analysis showed that the phosphorylation of MLC (myosin light chain) was significantly increased in aorta isolated from Mlk3KO mice. Together, Mlk3KO mice was successfully generated by CRISPR/Cas9 system. MLK3 functions in maintaining blood pressure homeostasis by regulating MLC phosphorylation. This study provides an animal model for exploring the mechanism by which Mlk3 protects against the development of hypertension and hypertensive cardiovascular remodeling.


Subject(s)
Animals , Mice , Mice, Knockout , CRISPR-Cas Systems , Blood Pressure , Gene Knockout Techniques , Zygote
12.
Braz. j. med. biol. res ; 56: e12854, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1520474

ABSTRACT

During the tumorigenic process, cancer cells may become overly dependent on the activity of backup cellular pathways for their survival, representing vulnerabilities that could be exploited as therapeutic targets. Certain molecular vulnerabilities manifest as a synthetic lethality relationship, and the identification and characterization of new synthetic lethal interactions may pave the way for the development of new therapeutic approaches for human cancer. Our goal was to investigate a possible synthetic lethal interaction between a member of the Chromodomain Helicase DNA binding proteins family (CHD4) and a member of the histone methyltransferases family (SETDB1) in the molecular context of a cell line (Hs578T) representing the triple negative breast cancer (TNBC), a subtype of breast cancer lacking validated molecular targets for treatment. Therefore, we employed the CRISPR-Cas9 gene editing tool to individually or simultaneously introduce indels in the genomic loci corresponding to the catalytic domains of SETDB1 and CHD4 in the Hs578T cell line. Our main findings included: a) introduction of indels in exon 22 of SETDB1 sensitized Hs578T to the action of the genotoxic chemotherapy doxorubicin; b) by sequentially introducing indels in exon 22 of SETDB1 and exon 23 of CHD4 and tracking the percentage of the remaining wild-type sequences in the mixed cell populations generated, we obtained evidence of the existence of a synthetic lethality interaction between these genes. Considering the lack of molecular targets in TNBC, our findings provided valuable insights for development of new therapeutic approaches not only for TNBC but also for other cancer types.

13.
Cancer Research on Prevention and Treatment ; (12): 1051-1058, 2023.
Article in Chinese | WPRIM | ID: wpr-998951

ABSTRACT

Objective To investigate the functions of the KIFC1 gene in tumor cells and its effect on the proliferation of cervical cancer cells. Methods We designed sgRNAs targeting the KIFC1 gene and constructed a recombinant plasmid based on the pSpCas9 (BB)-2A-GFP vector, which was co-transfected into HeLa cells. We screened monoclonal knockout cell lines through flow cytometry sorting, limited dilution inoculation of cells, and sequencing. RT-qPCR, Western blot, and immunofluorescence were used to detect the transcription and protein expression levels of KIFC1 in knockout cells. Cell phenotypes such as nucleus and microtubule cytoskeleton were observed using phase-contrast microscopy and fluorescence confocal microscopy. Cell proliferation, cell cycle, and apoptosis were analyzed by growth curve plotting, EdU labeling, and acridine orange staining. Results The deletion of the KIFC1 gene resulted in the abnormal phenotypes of HeLa cells, with increased numbers of multinuclei, micronucleus, and disordered microtubules. The cell cycle was disrupted, accompanied with a significant increase in the ratio of late apoptotic cells and a decrease in cell proliferation (all P < 0.05). Conclusion KIFC1 gene deletion affects the assembly of microtubules and cell division in HeLa cells, leading to abnormal nuclear morphology, chromatin elimination, cell cycle arrest, and increased cell apoptosis.

14.
Chinese Journal of Laboratory Medicine ; (12): 524-528, 2023.
Article in Chinese | WPRIM | ID: wpr-995759

ABSTRACT

Herpes simplex virus (HSV) is a double-stranded DNA enveloped virus that causes severe effects on the human body by infecting the skin and nerve tissues. Because of latency and reactivation, the rapid detection and eradication of HSV are great challenges for clinical treatments. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system has developed rapidly in the field of gene editing and detection due to its simple design and high targeting efficiency.

15.
Chinese Journal of Ocular Fundus Diseases ; (6): 605-610, 2023.
Article in Chinese | WPRIM | ID: wpr-995673

ABSTRACT

Inherited retinal diseases (IRDs) are the major cause of refractory blinding eye diseases, and gene replacement therapy has already made preliminary progress in the treatment of IRDs. For IRDs that cannot be treated by gene replacement therapy, gene editing provides an alternative therapeutic method. Strategies like disruption of pathogenic variants with or without gene augmentation therapy and precise repair of pathogenic variants can be applied for IRDs with various inheritance patterns and pathogenic variants. In animal models of retinitis pigmentosa, Usher syndrome, Leber congenital amaurosis, cone rod cell dystrophy, and other disorders, CRISPR/Cas9, base editing, and prime editing showed the potential to edit pathogenic variations in vivo, indicating a promising future for gene editing therapy of IRDs.

16.
Article | IMSEAR | ID: sea-225792

ABSTRACT

Gene therapy has a huge clinical relevance in the present therapeutic world and is one of the many research fields of biology which received many benefits from the recent advancements of modern clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing technology. Researchers are on the way to make significant changes in the ways of treating genetic abnormalities. An increase in the number of approved clinical trials of CRISPR based gene therapy shows we are not too far from eliminating deadly diseases such as acquired immunodeficiency syndrome (AIDS), cancer and many inherited genetic conditions from the society. However, there are some challenges associated with the development of CRISPR technology in medical field most of which revolves around its safety, efficiency and ethics. Lack of an optimized method by which the CRISPR-Cas9 expression cassette can be delivered to cells is one of the main challenges when it comes to its application in human gene therapy. Although viral vectors are the most common delivery systems used in gene therapy, recent researches show promising results on using lipid-based l delivery systems such as liposome-templated hydrogel nanoparticles (LHNPs). As these could eliminate the safety concerns of using viral vectors, it is expected to have potential therapeutic applications in future. Nevertheless, the efficiency of non-viral systems is still not fully comparable with that of viral vectors. Hence, CRISPR based therapies might take longer than expected tobe prevalent in the medical field. In this short review, the recent advances of CRISPR technology in gene therapy is discussed along with its challenges and limitations.

17.
Chinese Journal of Cancer Biotherapy ; (6): 18-22, 2022.
Article in Chinese | WPRIM | ID: wpr-920497

ABSTRACT

@#[摘 要] 目的:探讨混合谱系白血病5(MLL5)基因在小鼠结肠癌CT26细胞移植瘤生长中的作用及其分子机制。方法:利用CRISPR/Cas9技术构建MLL5基因缺失、MLL5和DDX58双基因缺失的结肠癌CT26细胞模型,用Sanger测序和WB法验证敲除效果。将基因敲除的CT26细胞接种到野生型BALB/c小鼠和免疫缺陷型NSG小鼠皮下,构建基因缺失结肠癌CT26细胞移植瘤小鼠模型,并观察移植瘤的生长及荷瘤小鼠的总生存期(OS)。结果:在野生型小鼠中,MLL5基因缺失的CT26细胞移植瘤生长速度显著性低于野生型癌细胞移植瘤,并延长荷瘤小鼠的OS(P<0.01);在NSG小鼠中,MLL5基因缺失对CT26细胞移植瘤的生长速度以及荷瘤小鼠的OS没有明显改变。MLL5基因缺失提高了癌细胞中视黄酸诱导基因1(RIG-1)蛋白水平,DDX58基因缺失可逆转MLL5基因缺失在CT26细胞移植瘤中的作用。结论:MLL5基因缺失可提高结肠癌CT26细胞中RIG-1蛋白水平、促进肿瘤免疫,从而抑制荷瘤小鼠肿瘤生长,提示MLL5可能成为结肠癌治疗的新靶点。

18.
Journal of Zhejiang University. Science. B ; (12): 141-152, 2022.
Article in English | WPRIM | ID: wpr-929045

ABSTRACT

Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9), the third-generation genome editing tool, has been favored because of its high efficiency and clear system composition. In this technology, the introduced double-strand breaks (DSBs) are mainly repaired by non-homologous end joining (NHEJ) or homology-directed repair (HDR) pathways. The high-fidelity HDR pathway is used for genome modification, which can introduce artificially controllable insertions, deletions, or substitutions carried by the donor templates. Although high-level knock-out can be easily achieved by NHEJ, accurate HDR-mediated knock-in remains a technical challenge. In most circumstances, although both alleles are broken by endonucleases, only one can be repaired by HDR, and the other one is usually recombined by NHEJ. For gene function studies or disease model establishment, biallelic editing to generate homozygous cell lines and homozygotes is needed to ensure consistent phenotypes. Thus, there is an urgent need for an efficient biallelic editing system. Here, we developed three pairs of integrated selection systems, where each of the two selection cassettes contained one drug-screening gene and one fluorescent marker. Flanked by homologous arms containing the mutated sequences, the selection cassettes were integrated into the target site, mediated by CRISPR/Cas9-induced HDR. Positively targeted cell clones were massively enriched by fluorescent microscopy after screening for drug resistance. We tested this novel method on the amyloid precursor protein (APP) and presenilin 1 (PSEN1) loci and demonstrated up to 82.0% biallelic editing efficiency after optimization. Our results indicate that this strategy can provide a new efficient approach for biallelic editing and lay a foundation for establishment of an easier and more efficient disease model.


Subject(s)
Alleles , CRISPR-Cas Systems , DNA End-Joining Repair , Gene Editing/methods , Recombinational DNA Repair
19.
Journal of Experimental Hematology ; (6): 559-564, 2022.
Article in Chinese | WPRIM | ID: wpr-928754

ABSTRACT

OBJECTIVE@#To construct a mouse model of Glanzmann's thrombasthenia (GT) with ITGA2B c.2659 C>T (p.Q887X) nonsense mutation by CRISPR/Cas9 technology, and then further explore the expression and function of glycoprotein αIIbβ3 on the surface of platelet membrane.@*METHODS@#The donor oligonucleotide and gRNA vector were designed and synthesized according to the ITGA2B gene sequence. The gRNA and Cas9 mRNA were injected into fertilized eggs with donor oligonucleotide and then sent back to the oviduct of surrogate mouse. Positive F0 mice were confirmed by PCR genotyping and sequence analysis after birth. The F1 generation of heterozygous GT mice were obtained by PCR and sequencing from F0 bred with WT mice, and then homozygous GT mice and WT mice were obtained by mating with each other. The phenotype of the model was then further verified by detecting tail hemorrhage time, saphenous vein bleeding time, platelet aggregation, expression and function of αIIbβ3 on the surface of platelet.@*RESULTS@#The bleeding time of GT mice was significantly longer than that of WT mice (P<0.01). Induced by collagen, thrombin, and adenosine diphosphate (ADP), platelet aggregation in GT mice was significantly inhibited (P<0.01, P<0.01, P<0.05). Flow cytometry analysis showed that the expression of αIIbβ3 on the platelet surface of GT mice decreased significantly compared with WT mice (P<0.01), and binding amounts of activated platelets to fibrinogen were significantly reduced after thrombin stimulation (P<0.01). The spreading area of platelet on fibrinogen in GT mice was significantly smaller than that in WT mice (P<0.05).@*CONCLUSION@#A GT mouse model with ITGA2B c.2659 C>T (p.Q887X) nonsense mutation has been established successfully by CRISPR/Cas9 technology. The aggregation function of platelet in this model is defective, which is consistent with GT performance.


Subject(s)
Animals , Humans , Mice , CRISPR-Cas Systems , Codon, Nonsense , Disease Models, Animal , Fibrinogen/genetics , Integrin alpha2/genetics , Oligonucleotides , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Thrombasthenia/genetics , Thrombin/genetics
20.
Journal of Experimental Hematology ; (6): 334-340, 2022.
Article in Chinese | WPRIM | ID: wpr-928716

ABSTRACT

OBJECTIVE@#Two sgRNAs transfected FLT3-ITD+AML cell line MV411 with different binding sites were introduced into CRISPR/cas9 to obtain MV411 cells with miR-155 gene knockout. To compare the efficiency of miR-155 gene knockout by single and double sgRNA transfection and their effects on cell phenotypes.@*METHODS@#The lentiviral vectors were generated containing either single sgRNA or dual sgRNAs and packaged into lentivirus particles. PCR was conducted to measure gene editing efficiency, and miR-155 expression was evaluated by qPCR. CCK-8 assay was used to evaluate the cell proliferation, and calculate drug sensitivity of cells to adriamycin and quizartinib. Annexin V-APC/7-AAD staining was used to label cell apoptosis induced by adriamycin and quizartinib.@*RESULTS@#In the dual sgRNAs transfected cells, a cleavage band could be observed, meaning the success of gene editing. Compared with the single sgRNA transfected MV411 cells, the expression level of mature miR-155-5p was lower in the dual sgRNA transfected cells. And, dual sgRNA transfected MV411 were more sensitive to adriamycin and quizartinib with lower IC50 and higher apoptosis rate.@*CONCLUSION@#The inhibition rate of miR-155 gene expression transfected by dual sgRNA is higher than that by single sgRNA. Dual sgRNA transfection can inhibit cell proliferation, reverse drug resistance, and induce apoptosis more significantly. Compared with single sgRNA transfection, dual sgRNA transfection is a highly efficient gene editing scheme.


Subject(s)
Humans , CRISPR-Cas Systems , Doxorubicin/pharmacology , Drug Resistance , Gene Editing , Leukemia, Myeloid, Acute/genetics , MicroRNAs/genetics , /genetics , fms-Like Tyrosine Kinase 3/genetics
SELECTION OF CITATIONS
SEARCH DETAIL